An Effective Algorithm for Quadratic Optimization with Non-Convex Inhomogeneous Quadratic Constraints
نویسندگان
چکیده
منابع مشابه
Approximating Global Quadratic Optimization with Convex Quadratic Constraints
We consider the problem of approximating the global maximum of a quadratic program (QP) subject to convex non-homogeneous quadratic constraints. We prove an approximation quality bound that is related to a condition number of the convex feasible set; and it is the currently best for approximating certain problems, such as quadratic optimization over the assignment polytope, according to the bes...
متن کاملAn Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function
In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...
متن کاملA Semidefinite Optimization Approach to Quadratic Fractional Optimization with a Strictly Convex Quadratic Constraint
In this paper we consider a fractional optimization problem that minimizes the ratio of two quadratic functions subject to a strictly convex quadratic constraint. First using the extension of Charnes-Cooper transformation, an equivalent homogenized quadratic reformulation of the problem is given. Then we show that under certain assumptions, it can be solved to global optimality using semidefini...
متن کاملConvergence Rate of an Optimization Algorithm for Minimizing Quadratic Functions with Separable Convex Constraints
A new active set algorithm for minimizing quadratic functions with separable convex constraints is proposed by combining the conjugate gradient method with the projected gradient. It generalizes recently developed algorithms of quadratic programming constrained by simple bounds. A linear convergence rate in terms of the Hessian spectral condition number is proven. Numerical experiments, includi...
متن کاملan interior point algorithm for solving convex quadratic semidefinite optimization problems using a new kernel function
in this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual interior point method (ipm) based on a new kernel function with a trigonometric barrier term. iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. although our proposed kernel function is neither a self-regular (sr) function nor logarithmic barrier ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Pure Mathematics
سال: 2017
ISSN: 2160-0368,2160-0384
DOI: 10.4236/apm.2017.74018